US009304807B2

a2 United States Patent 10) Patent No.: US 9,304,807 B2
Douros et al. 45) Date of Patent: *Apr. 5, 2016
(54) FAULT TOLERANT BATCH PROCESSING USPC oot 714/15, 16, 20
See application file for complete search history.
(71) Applicant: Ab Initio Technology LL.C, Lexington,
MA (US) (56) References Cited
(72) Inventors: Bryan Phil Douros, Framingham, MA U.S. PATENT DOCUMENTS
(US); Matthew Darcy Atterbury,
Lexington, MA (US); Tim Wakeling, 5,524,241 A * 6/1996 Ghoneimyetal. 707/676
Andover, MA (US) 5,819,021 A 10/1998 Stanfill et al.
(73) Assignee: Ab Initio Technology LL.C, Lexington, (Continued)
MA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this CN 100444121 12/2008
patent is extended or adjusted under 35 CN 100461122 2/2009
U.S.C. 154(b) by O days. (Continued)
This patent is subject to a terminal dis-
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 14/057,157 International Search Report & Written Opinion issued in PCT appli-
ppl. O i cation No. PCT/US10/41791, mailed Sep. 1, 2010, 10 pages.
(22) Filed: Oct. 18, 2013 (Continued)
(65) Prior Publication Data . .
Primary Examiner — Marc Duncan
US 2014/0053159 Al Feb. 20, 2014 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
Related U.S. Application Data
(63) Continuation of application No. 13/523,422, filed on 7 ABSTRACT
Jun. 14, 2012, now Pat. No. 8,566,641, which is a Among other aspects disclosed are a method and system for
continuation of application No. 12/502,851, filed on processing a batch of input data in a fault tolerant manner. The
Jul. 14, 2009, now Pat. No. 8,205,113. method includes reading a batch of input data including a
51y Int. Cl plurality of records from one or more data sources and pass-
GD Gll0;$F 1 100 (2006.01) ing the batch through a dataflow graph. The dataflow graph
GO6F 9/46 (2006.01) includes two or more nodes representing components con-
GOG6F 11/14 (2006.01) nected by links representing flows of data between the com-
(52) US.Cl ' ponents. At least one but fewer than all of the components
cpe GOGF 9/46 (2013.01); GO6F 11/1438 includes a checkpoint process for an action performed for
""""""" (2013.01); GO6F 1171471 (2013.01) each of multiple units of work associated with one or more of
(58) Field of Classification Search the records. The checkpoint process includes opening a

CPC GOGF 11/1407, GOGF 11/1412; GOGF
11/1415; GOGF 11/1474; GOGF 11/1471;

GOGF 9/485; GOGF 11/1402; GOGF 11/1438;

GOGF 9/461

INITIATE
200 PROCESS

SOES 205
THECKPOINT BUFFER
EXIST FOR THIS YES
n
BATCH 208 | oPEN SAVED
CHECKPOINT
BUFFER

N
CREATENEW | 207
CHECKPOINT

BUFFER

checkpoint buffer stored in non-volatile memory at the start
of processing for the batch.

74 Claims, 4 Drawing Sheets

20

210

RESULT STORED IN THE
CHECKPOINT BUFFER?,

WAIT FOR SIGNAL
BATCH PROCESSING
COMPLETE

TERMINATE PROCESS

MORE
WORK UNITS TO BE
PROCESSED?
THAT

260
270

US 9,304,807 B2

Page 2
(56) References Cited 2008/0256014 Al 10/2008 Gould et al.
2008/0270403 Al* 10/2008 Bookman et al. 707/7
U.S. PATENT DOCUMENTS 2008/0276239 Al* 11/2008 Collinsetal. 718/101
2008/0294937 Al 11/2008 Ueda et al.
5,966,072 A * 10/1999 Stanfill et al.c.......... 340/440 2008/0307258 Al* 12/2008 Challengeretal. 714/20
6,154,877 A 11/2000 Ramkumar et al. 2009/0083313 Al 3/2009 Stanfill et al.
6,401,216 B1* 6/2002 Meth et al.ccoomrvrnrr..... 714/16 2010/0293532 Al* 11/2010 Andradeetal. ... 717/140
6,584,581 B1* 6/2003 Bayetal. 714/16 2011/0016354 Al 1/2011 Douros et al.
7,164,422 Bl 1/2007 Wholey, III et al. 2012/0311588 Al 12/2012 Douros et al.
7,167,850 B2 1/2007 Stanfill
7,634,687 B2* 12/2009 Haseldenetal. 714/15 FOREIGN PATENT DOCUMENTS
7,873,859 B2* 1/2011 Smithetal. .. . 71472
7,890,800 B2* 2/2011 Weiberle et al. .. 714/15 Jp 2008293358 4/2008
7,900,015 B2* 3/2011 Fachan et al. 711/172 WO WO2009/039352 3/2009
8,074,222 B2* 12/2011 Hirai 718/102
8,205,113 B2* 6/2012 Douros et al. .. 714/15 OTHER PUBLICATIONS
8,214,686 B2* 7/2012 Ueda 714/15
8,566,641 B2* 10/2013 Douros et al. . T14/15 Supplementary European Search Report, EP10800408, mailed Mar.
2001/0042224 Al* 11/2001 Stanfill et al. .. 714/16 22,2013, 3 pages
2002/0188653 Al™* 12/2002 Suncoococvvvvvveeeeriennnnn 709/201 . ’ L
5004/0199812 Al* 10/2004 Earetal. 714/13 Chinese Office Action, with English Translation, CN Application No.
2005/0034014 Al* 2/2005 Moseretal. ...oovvovvv... 714/17 201080031812.2, mailed Jan. 21, 2014, 14 pages.
2005/0114369 Al 5/2005 Gould et al. Japanese Office Action, with English Translation, JP App. No. 2012-
2005/0256826 Al* 11/2005 Hambricketal. 707/1 520711, mailed May 12, 2014, 15 pages.
2005/0283665 Al* 12/2005 Leveringetal. 714/21 Japanese Decision of Rejection, English Translation, JP App. No.
2006/0095466 Al 5/2006 Stevens et al. 2012-52071 1’ issued Oct. 27’ 2014 (2 pages).
2006/0136279 AL* 6/2006 Maybee etal. 705/9 European Search Report issued in EP 14188647, mailed Feb. 20
2007/0271381 Al* 11/2007 Wholey et al. 709/226 P P ’ Ce
2008/0005227 AL* 1/2008 Subbiah 700/203 2015 (7 pages).
2008/0049022 Al 2/2008 Sherb et al.
2008/0115136 Al* 5/2008 Smithetal.c......... 718/101 * cited by examiner

US 9,304,807 B2

Sheet 1 of 4

Apr. 5, 2016

U.S. Patent

091

l Old

lanieg
ajoway

0Gl

\ 4

N

ONILNIOdMD3IHD

ONILNIOdXDO3FHD

L1NOHLIM < HLIM <«<— NIOl
ININOJNOD ININOdJNOD
ov_\K om_\.\ ON_\.\

-
-
—

49"

U.S. Patent Apr. 5, 2016 Sheet 2 of 4 US 9,304,807 B2
INITIATE 5)1
200 PROCESS
OESA 205
l_NO EXIST FOR THIS YES—
208
CREATE NEW | 207 OPEN SAVED
CHECKPOINT |~/ \._| CHECKPOINT
BUFFER BUFFER
| | |
210 v
\{d RECEIVE NEXT WORK UNIT
220 Y
\] PRE-PROCESSING

225
S RESULT STORED INTH

I NG CHECKPOINT BUFFER? YES_l
PERFORM COSTLY I~ EADRESULT
ACTION 230 250\ EROM
v CHECKPOINT
SAVERESULTTO | o0 BUFFER
CHECKPOINT | £
BUFFER
|
y 260
POST-PROCESSING |
270
MORE
{NO WORK UNITS TO BE YES
PROCESSED?
WAIT FOR SIGNAL THAT
BATCH PROCESSING |~
COMPLETE 280
DELETE CHECKPOINT | 28° FIG. 2
BUFFER |
v 290
TERMINATE PROCESS |/

US 9,304,807 B2

Sheet 3 of 4

Apr. 5, 2016

U.S. Patent

09¢

0G¢e

-~

Jonieg

€ 3ONVLSNI
ONILNIOdAMO3HO
HLIM
ININOdNOD

€ee

sloway

//

¢ 3ONVLSNI
ONILNIOdAMO3HO
HLIM
ININOdNOD

I SONVLSNI
ONILNIOdAMO3HO
HLIM
ININOdNOD

ONILNIOdAXO3HO

LNOHLIM Nl

ININOdNOD

H3HLVO

- ove

/wmm

< > NOILILYVYd

Lo w:y

¢ Old

3%

US 9,304,807 B2

Sheet 4 of 4

Apr. 5,2016

U.S. Patent

09y

1% 7 ™~
€ IONVLSNI
]) oz_PzT_mﬂ_m\/xom_Io SZOYNYI
v 9Ol ININOdWOD / LNIOdMO3HD
ecp - H - T
Z IDONVLSNI
ONILNIOdMDIHD)
Janeg 1|V HLIM A
ajoWaY v IN3INOdWOD [€
zey _—
N [— GeY
ost S ~
|l IONVLSNI \
) ONILNIOdMDIHD)
HLIM
~1 1IN3aNOdWOD
(%7
oLy
ONILNIOIMDTHD
LNOHLIM <« YIHLYO (< U(>Y) NOILILYVd |& ._.Zm_ﬂ_OOn__,_\/_OO
LININOJNOD . .
Lo w:y
ovr— ___ sep— sy zp
% ¢y

US 9,304,807 B2

1
FAULT TOLERANT BATCH PROCESSING

CLAIM OF PRIORITY

This application is a continuation application and claims
priority under 35 U.S.C. §120 to U.S. patent application Ser.
No. 13/523,422 filed on Jun. 14, 2012, now U.S. Pat. No.
8,566,641, which is a continuation application of and claims
priority under 35 U.S.C. §120 to U.S. patent application Ser.
No. 12/502,851 filed on Jul. 14, 2009, now U.S. Pat. No.
8,205,113 issued on Jun. 19, 2012, the entire contents of
which are hereby incorporated by reference.

TECHNICAL FIELD

This description relates to processing batches of data in a
fault tolerant manner.

BACKGROUND

Complex computations can often be expressed a directed
graph (called a “datatlow graph”), with components of the
computation being associated with the nodes (or vertices) of
the graph and data flows between the components corre-
sponding to links (or arcs, edges) between the nodes of the
graph. The components include data processing components
that process the data and components that act as a source or
sink of the data flows. The data processing components form
a pipelined system that can process data in multiple stages
concurrently. A system that implements such graph-based
computations is described in U.S. Pat. No. 5,966,072,
EXECUTING COMPUTATIONS EXPRESSED AS
GRAPHS. In some cases, a graph-based computation is con-
figured to receive a flow of input data and process the con-
tinuous flow of data to provide results from one or more of the
components indefinitely until the computation is shut down.
In some cases, a graph-based computation is configured to
receive a batch of input data and process the batch of data to
provide results for that batch, and then shut down or return to
an idle state after the batch has been processed.

SUMMARY

Inoneaspect, in general, a method for processing a batch of
input data in a fault tolerant manner includes: reading a batch
of'input data including a plurality of records from one or more
data sources; and passing the batch through a dataflow graph
including two or more nodes representing components con-
nected by links representing flows of data between the com-
ponents, wherein at least one but fewer than all of the com-
ponents includes a checkpoint process for an action
performed for each of multiple units of work associated with
one or more of the records. The checkpoint process includes:
opening a checkpoint buffer stored in non-volatile memory at
the start of processing for the batch; and for each unit of work
from the batch, if a result from performing the action for the
unit of work was previously saved in the checkpoint buffer,
using the saved result to complete processing of the unit of
work without performing the action again, or if a result from
performing the action for the unit of work is not saved in the
checkpoint buffer, performing the action to complete process-
ing of the unit of work and saving the result from performing
the action in the checkpoint buffer.

Aspects can include one or more of the following features.

The action includes communicating with a remote server.

10

15

20

25

30

35

40

45

50

55

60

65

2

The result from performing the action includes information
from communication with the remote server for the unit of
work.

The method further includes deleting the checkpoint buffer
when the processing of the batch is complete.

Communications with the remote server are tolled.

The results of communications with the remote server are
stored in volatile memory and saved to the checkpoint buffer
in groups upon the occurrence of trigger events.

The trigger event is a signal from a checkpoint manager.

The trigger event is the processing of a number of records
since the last write to the checkpoint buffer.

The trigger event is the elapse of a period of time since the
last write to the checkpoint buffer.

A component that includes the checkpoint process runs on
a plurality of processing devices in parallel.

The allocation of data records among the plurality of par-
allel processing devices is consistent between runs of the
batch and each processing device maintains an independent
checkpoint buffer.

The allocation of data records among the plurality of par-
allel processing devices is dynamic and the processing
devices share access to a single checkpoint buffer stored in
shared non-volatile memory with writes to the checkpoint
buffer controlled by a checkpoint manager.

The method further includes restarting all the components
in the dataflow graph after a fault condition has occurred;
reading the batch of input data including a plurality of records
from one or more data sources; and passing the entire batch
through the dataflow graph.

The action includes communicating with a remote server.

In another aspect, in general, a computer-readable medium
stores a computer program for processing a batch of input
data in a fault tolerant manner. The computer program
includes instructions for causing a computer to: read a batch
of'input data including a plurality of records from one or more
data sources; and pass the batch through a datatlow graph
including two or more nodes representing components con-
nected by links representing flows of data between the com-
ponents, wherein at least one but fewer than all of the com-
ponents includes a checkpoint process for an action
performed for each of multiple units of work associated with
one or more of the records. The checkpoint process further
includes: opening a checkpoint buffer stored in non-volatile
memory at the start of processing for the batch; and for each
unit of work from the batch, if a result from performing the
action for the unit of work was previously saved in the check-
point buffer, using the saved result to complete processing of
the unit of work without performing the action again, or if a
result from performing the action for the unit of work is not
saved in the checkpoint buffer, performing the action to com-
plete processing of the unit of work and saving the result from
performing the action in the checkpoint buffer.

In another aspect, in general, a system for processing a
batch of input data in a fault tolerant manner includes: means
for receiving a batch of input data including a plurality of
records from one or more data sources; and means for passing
the batch through a dataflow graph including two or more
nodes representing components connected by links represent-
ing flows of data between the components, wherein at least
one but fewer than all of the components includes a check-
point process for an action performed for each of multiple
units of work associated with one or more of the records. The
checkpoint process includes: opening a checkpoint buffer
stored in non-volatile memory at the start of processing for
the batch; and for each unit of work from the batch, if a result
from performing the action for the unit of work was previ-

US 9,304,807 B2

3

ously saved in the checkpoint buffer, using the saved result to
complete processing of the unit of work without performing
the action again, or if a result from performing the action for
the unit of work is not saved in the checkpoint buffer, per-
forming the action to complete processing of the unit of work
and saving the result from performing the action in the check-
point buffer.

Aspects can include one or more of the following advan-
tages:
The need for some checkpoint related communications
between different components in the dataflow graph can be
obviated The repeat of complex or costly steps in multi-step
batch process during fault recovery can be selectively avoided
without the complexity and expense of implementing check-
pointing of the entire pipelined system. For example, this
method may be used to save money by avoiding repeated calls
to a tolled service.

Other features and advantages of the invention will become
apparent from the following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG.1 is ablock diagram of a batch data processing system
with input/output checkpointing.

FIG. 2 is a flowchart of a checkpoint process.

FIG. 3 is ablock diagram of a batch data processing system
with input/output checkpointing with parallelism.

FIG. 4 is ablock diagram of a batch data processing system
with input/output checkpointing with parallelism and a
checkpoint manager.

DESCRIPTION

A graph-based data processing system can be configured to
process a batch of input data in a fault tolerant manner includ-
ing saving the intermediate results of one component in a
dataflow graph to a bufter from which they can be retrieved
and reused in the event that a fault condition forces a restart of
the processing of a batch of input data.

FIG. 1 is a block diagram of an exemplary data processing
system 100. Data is passed through a sequence of data pro-
cessing components of a dataflow graph that processes a flow
of data from one or more data sources to one or more data
sinks. Any of the various data processing components in the
dataflow graph can be implemented by processes running on
separate processing devices, or multiple data processing com-
ponents may be implemented by one or more processes run-
ning on a single processing device. Data may be processed in
batches that identify a set of input data records to be processed
by the system 100.

The processing of a batch of data by the system 100 may be
initiated by user input or some other event, such as the expi-
ration of atimer. When processing of a batch of data is started,
input data records are read from one or more input data
sources. For example, the input data may be read from one or
more files stored on a computer-readable storage device, such
as represented by data storage component 110. Input data
records may also be read from a database running on a server,
such as represented by data storage component 112. A join
component 120 reads data (e.g., records) from multiple data
sources in a sequence and arranges the input data into a
sequence of discrete work units. The work units may repre-
sent records stored in a predetermined format based on input
records, for example, or may represent transactions to be
processed, for example. In some implementations, each work
unit may be identified by a number that is unique within the

10

25

40

45

55

4

batch, such as a count of work units processed. The work units
are then passed in sequence to the next component in the
dataflow graph.

The exemplary dataflow graph implementing the system
100 also includes data processing components 130 and 140.
The data processing component 130 includes a checkpoint
process, which regularly saves state information about its
processing to non-volatile memory during the course of batch
processing. When a fault condition occurs and a batch must be
restarted, the checkpointed component 130 accesses the
stored state information to reduce the amount of processing
that must be repeated during a repeat run of the batch. Thus,
checkpointing provides fault tolerance at the cost of using the
non-volatile memory resource and adding complexity to the
data processing component 130. The data processing compo-
nent 140 is a component without checkpointing. Other data-
flow graphs could include more or fewer data processing
components. As many of the data processing components as
necessary may be configured to include checkpoint pro-
cesses. Typically, components with high costs in terms of
delay or some other metric are configured to include check-
point processes, so that in the event of a fault condition, the
high cost processing steps in the system 100 need not be
repeated for all work units in the batch.

The data processing component 130 includes the step of
accessing a remote server 150. For each work unit processed,
the first processing component 130 will send a request to the
remote server 150 and receive a result (e.g., data from a
database) from the remote server. Such an operation can be
costly for various reasons including network delays experi-
enced in communicating with the remote server or tolling of
services provided by the remote server. After receiving the
result, the component 130 generates output for the next data
processing component 140. Since this component 130 has
been configured to include a checkpoint process, it saves the
results from the remote server 150 as part of the processing
state information before completing processing by passing
the output for the work unit to the next data processing com-
ponent 140 and starting processing of the next work unit. The
processing state information may be temporarily stored in
volatile memory on the processing device running the check-
point process. At regular times the processing state informa-
tion for one or more work units is written to a checkpoint
buffer stored in non-volatile memory, so that it will be avail-
able later in the event of a fault condition.

As work units make their way through the data processing
components of the dataflow graph, the final results associated
with each work unit are transferred to a data sink 160. The
work units can be transferred individually, or in some imple-
mentations the work units can be used to incrementally
update a final result, or can be accumulated (e.g., in a queue),
before the final results are transferred to the data sink 160. The
data sink 160 can be a data storage component that stores the
work units or some accumulated output based on the work
units, for example, or the data sink 160 can be a queue to
which the work units are published, or some other type of sink
for receiving the final results. The batch processing ends
when the results for all work units in the batch have been
transferred to the data sink 160. At this point, the components
in the dataflow graph may be terminated. A checkpoint pro-
cess associated with a checkpointed component may delete
its checkpoint buffer as part of its termination routine.

FIG. 2 is a flowchart of an exemplary process 200 for
checkpointing a checkpointed component. The process 200
starts up 201, for example, upon an external call from soft-
ware implementing batch processing through a dataflow
graph. Start-up may include allocating volatile memory for

US 9,304,807 B2

5

the process 200 on the processing device that the check-
pointed component runs on and reserving any other required
resources. The process 200 next checks 205 whether a check-
point buffer associated with this process already is saved in
non-volatile memory. If no checkpoint buffer exists, a new
checkpoint buffer is created 207 in non-volatile memory. If a
checkpoint buffer was previously stored, it is opened 208.
Opening 208 the checkpoint buffer may include finding the
location of the checkpoint buffer in non-volatile memory or
possibly copying all or part the checkpoint buffer to volatile
memory on the processing device.

At the beginning of a loop for handling each work unit,
input data associated with a work unit is received 210 from a
previous component in the dataflow graph or from a source.
Pre-processing 220 is optionally performed for the work unit.
Pre-processing 220 may include, for example, reformatting a
data record or determining a value that may be used to search
the checkpoint buffer for a result associated with the work
unit. The checkpoint buffer of the checkpoint process 200 is
checked 225 to determine if the result for this work unit is
stored in the checkpoint buffer (e.g., from a previous process-
ing of the batch that was interrupted).

If the associated result is not stored in the checkpoint
buffer, processing including a costly action 230 is performed
for the work unit. An example of a costly action could include
accessing resources on a remote server across a network and
incurring significant delay or tolling charges. The results of
this processing are then stored 240 in the checkpoint buffer.
The results can be associated with the work unit being pro-
cessed using an incrementing counter, for example, that iden-
tifies the work unit and its associated result by the same
counter value. The results may be written directly to non-
volatile memory, or may be temporarily buffered in volatile
memory until a triggering event causes it to be copied to
non-volatile memory. Exemplary triggering events include
processing a fixed number of work units, an elapsed period of
time, or a signal from an external process.

If the associated result is stored in the checkpoint buffer,
the result is retrieved 250 from the checkpoint buffer.

Post-processing 260 is optionally performed to complete
processing of the work unit. Post-processing 260 may include
reformatting data or passing data to the next component in a
dataflow graph, for example. After processing of a work unit
is complete the checkpoint process 200 next checks 270
whether another work unit remains to be processed. [f another
work unit is available, the checkpoint process 200 loops back
to read the input data associated with the next work unit.
‘When no more work units remain to be processed, the check-
point process 200 waits 280 for an external signal indicating
that the batch processing has been completed and instructing
it to terminate. When the termination signal is received, the
checkpoint process 200 deletes 285 its checkpoint buffer
from non-volatile memory, before completing its termination
sequence 290. Completing the termination sequence 290 may
include releasing volatile memory on the processing device or
other reserved resources.

FIG. 3 is a block diagram of an exemplary data processing
system 300 in which a dataflow graph implementing the
system 300 includes a parallel component with distributed
checkpoint processing. One or more components in the data-
flow graph may be run on multiple processing devices (e.g.,
multiple computers or multiple processors or processor cores
of a parallel processor) in parallel. In this example, multiple
instances 331, 332,333 of a checkpointed parallel component
are explicitly depicted. An instance of the parallel component
is run on each processing device and each instance processes
a subset of the work units in a batch. In this example of a

20

40

45

6

distributed checkpointing approach, a different checkpoint
process is run for each of the three instances of the parallel
component.

When processing of a batch of data is started, input data
records are read from one or more input data sources. For
example, the input data may be read from one or more files
stored on a computer-readable storage device, such as repre-
sented by data storage component 310. Input data records
may also be read from a database running on a server, such as
represented by data storage component 312. A join compo-
nent 320 reads data from multiple data sources in a sequence
and arranges the input data into a sequence of discrete work
units. The work units are then passed in sequence to the next
component in the dataflow graph.

Since the next data processing component in the dataflow
graph is a parallel component, the work units are partitioned
and allocated to multiple component instances by a work unit
partition component 330. In this example, the allocation of
work units among the instances is consistent between differ-
ent batch processing runs, so that the instances do not need to
access state information for work units allocated to other
instances. The work unit partition component 330 assigns
work units to particular instances based on a consistent algo-
rithm that may be repeated with consistent results if a fault
conditions occurs and the batch needs to run again. For
example, the work unit allocation partition component 330
may simply allocate work units one at a time to each compo-
nent instance in turn, looping to the first instance when the
work unit count exceeds the number of parallel instances. In
another example, the work unit partition component 330 may
apply a partition algorithm that is not guaranteed to yield
consistent allocations between runs and save the allocation
information to nonvolatile memory, so that the same alloca-
tion may be repeated if a repeat run the of the batch is
required.

Each instance 331, 332, 333 of the checkpointed parallel
component independently processes the work units allocated
to it using the methods described in relation the checkpointed
component 130 of FIG. 1. Each instance 331, 332, 333 creates
and maintains its own checkpoint buffer in non-volatile
memory. When a work unit is processed an instance checks its
own checkpoint buffer to determine if the work unit has been
previously processed during a prior run of the batch. In the
exemplary system 300, the checkpointed parallel component
includes the action of communicating with a remote server
350 to acquire information for each work unit. In other
examples, the checkpointed parallel component may include
other actions that have a high cost associated with them that
justity the maintenance of a checkpoint buffer for fault toler-
ance.

When processing of a work unit is completed the results are
passed to a gather component 338 that collects results from
multiple instances and passes them to the next data processing
component in the dataflow graph.

The data processing component 340 is a component with-
out checkpointing. In other examples, any number of compo-
nents in the dataflow graph can include checkpointing. In
some cases it is advantageous to limit checkpoint processing
to components in which costly actions are performed. Other
dataflow graphs could include more or fewer data processing
components with or without parallelism for any given data
processing component.

As work units make their way through the components of
the dataflow graph, the final results associated with each work
unit are transferred to a data sink 360. The batch processing
ends when the results for all work units in the batch have been
transferred to the data sink 360. At this point, the processes

US 9,304,807 B2

7

associated with the components in the dataflow graph may be
terminated. A checkpoint process for a given instance may
delete its checkpoint buffer as part of its termination routine.

FIG. 4 is a block diagram of an exemplary data processing
system 400 in which in which a dataflow graph implementing
the system 400 includes a parallel component with central-
ized checkpoint processing. In this example, multiple
instances 431, 432,433 of a checkpointed parallel component
are explicitly depicted. An instance of the parallelized com-
ponent is run on each processing device and each instance
processes a subset of the work units in a batch. In this example
of a centralized checkpointing approach, a checkpoint man-
ager 436 handles at least some of the checkpoint processing in
communication with each of the three instances of the parallel
component. The checkpoint manager 436 can be run on one of
the processing devices that is running an instance of the
parallel component or on an separate processing device.

When processing of a batch of data is started, input data
records are read from the data storage components 410 and
412. A join component 420 reads data from multiple data
sources in a sequence and arranges the input data into a
sequence of discrete work units stored. The work units are
then passed in sequence to the next component in the dataflow
graph, which in this example is a checkpointed parallel com-
ponent.

In the example of FIG. 4, the checkpoint manager 436
controls access to a single checkpoint buffer that is shared by
the instances 431, 432, 433 each running on a different pro-
cessing device. Sharing a single checkpoint buffer for all
work units in a batch allows the work units to be dynamically
allocated to the instances without needing to match the allo-
cation from a previous run of the batch. The shared check-
point buffer is stored on a shared non-volatile memory 435
that all the instances can access either directly via a bus or
communications network, or indirectly via communications
with the checkpoint manager 436. The instances 431, 432,
433 may read the shared non-volatile memory 435 to check
the checkpoint buffer when they processes a work unit. If
results for the current work unit are found in the checkpoint
buffer, the stored result is used to avoid repeating the high cost
action. If results for the current work unit are not found in the
checkpoint buffer, the action for the work unit is executed and
the result is stored in the checkpoint buffer. To write to the
checkpoint buffer, the instances 431, 432, 433 send a write
request message to the checkpoint manager 436. The check-
point manager 436 then writes to the shared non-volatile
memory 435 to update the checkpoint buffer. In an alternative
embodiment, the checkpoint manager 436 sends a token to
requesting instance that gives it permission to write to the
shared non-volatile memory 435 in order to update the check-
point buffer.

Because a shared checkpoint buffer is used by all the
instances 431, 432, 433, the work unit partition component
430 may dynamically allocate work units between the
instances differently during each run of a batch of data. For
example, the work unit partition component 430 may allocate
each work unit dynamically based on available capacity on
each processing device at run time, which may vary from run
to run. This method also allows the work unit partition com-
ponent 430 to use different numbers of parallel instances. For
example, after a fault condition one of the processing devices
running an instance of the parallel component, such as
instance 433 may be disabled or otherwise unavailable. In this
case when the batch is restarted, the work unit partition com-
ponent 430 may allocate all of the work units to the remaining

20

35

40

45

55

8

instances 431, 432, which may seamlessly access checkpoint
buffer entries for work units previously processed by the
disabled instance 433.

The checkpoint manager 436 may be implemented by a
process running on a separate processing device or it may be
a implemented by a process running on one of the processing
devices that is running an instance of the parallel component.
The instances 431, 432, 433 may buffer checkpoint buffer
updates in local volatile memory between checkpoint buffer
update events. The checkpoint manager 436 may send signals
to the instances that trigger an instance to initiate a checkpoint
buffer update with any information buffered in volatile
memory.

When processing of a work unit is completed the results are
passed to a gather component 438 that collects results from
multiple instances and passes them to the next data processing
component in the dataflow graph.

The data processing component 440 is a component with-
out checkpointing. In other examples, any number of compo-
nents in the dataflow graph can include checkpointing. In
some cases it is advantageous to limit checkpoint processing
to components in which costly actions are performed. Other
dataflow graphs could include more or fewer processing com-
ponents with or without parallelism for any given data pro-
cessing component.

As work units make their way through the components of
the dataflow graph, the final results associated with each work
unit are transferred to a data sink 460. The batch processing
ends when the results for all work units in the batch have been
transferred to the data sink 460. At this point, the components
in the datatlow graph may be terminated. The checkpoint
manager 436 may delete the checkpoint buffer as part of its
termination routine.

The fault tolerant batch processing approach described
above can be implemented using software for execution on a
computer. For instance, the software forms procedures in one
or more computer programs that execute on one or more
programmed or programmable computer systems (which
may be of various architectures such as distributed, client/
server, or grid) each including at least one processor, at least
one data storage system (including volatile and non-volatile
memory and/or storage elements), at least one input device or
port, and at least one output device or port. The software may
form one or more modules of a larger program, for example,
that provides other services related to the design and configu-
ration of computation graphs. The nodes and elements of the
graph can be implemented as data structures stored in a com-
puter readable medium or other organized data conforming to
a data model stored in a data repository.

The software may be provided on a storage medium, such
as a CD-ROM, readable by a general or special purpose
programmable computer or delivered (encoded in a propa-
gated signal) over a communication medium of a network to
the computer where it is executed. All of the functions may be
performed on a special purpose computer, or using special-
purpose hardware, such as coprocessors. The software may
be implemented in a distributed manner in which different
parts of the computation specified by the software are per-
formed by different computers. Each such computer program
is preferably stored on or downloaded to a storage media or
device (e.g., solid state memory or media, or magnetic or
optical media) readable by a general or special purpose pro-
grammable computer, for configuring and operating the com-
puter when the storage media or device is read by the com-
puter system to perform the procedures described herein. The
inventive system may also be considered to be implemented
as a computer-readable storage medium, configured with a

US 9,304,807 B2

9

computer program, where the storage medium so configured
causes a computer system to operate in a specific and pre-
defined manner to perform the functions described herein.

A number of embodiments of the invention have been
described. Nevertheless, it will be understood that various
modifications may be made without departing from the spirit
and scope of the invention. For example, some of the steps
described above may be order independent, and thus can be
performed in an order different from that described.

It is to be understood that the foregoing description is
intended to illustrate and not to limit the scope of the inven-
tion, which is defined by the scope of the appended claims.
For example, a number of the function steps described above
may be performed in a different order without substantially
affecting overall processing. Other embodiments are within
the scope of the following claims.

What is claimed is:

1. A method performed by one or more computer systems
that include memory for processing a batch of input datain a
fault tolerant manner, the method including:

performing computations on the batch of input data,

wherein at least one but fewer than all of the computa-
tions includes a checkpoint process for multiple units of
work associated with the batch;

wherein the checkpoint process includes:

for a unit of work from the batch,

if a result from performing an action for the unit of
work was previously saved in a checkpoint buffer
stored in memory, using the saved result to com-
plete performing the computations on the unit of
work without performing the action again; or

if the result from performing the action for the unit of
work is not saved in the checkpoint buffer, perform-
ing the action to complete performing the compu-
tations on the unit of work and saving the result
from performing the action in the checkpoint
buffer.

2. The method of claim 1, wherein the action includes
communicating with a remote server.

3. The method of claim 2, wherein the result from perform-
ing the action includes information from communication with
the remote server for the unit of work.

4. The method of claim 2, wherein communications with
the remote server are tolled.

5. The method of claim 2, wherein the results of commu-
nications with the remote server are stored in volatile memory
and saved to the checkpoint buffer in groups upon the occur-
rence of trigger events.

6. The method of claim 5, wherein the trigger event is a
signal from a checkpoint manager.

7. The method of claim 5, wherein the trigger event is
processing of a number of records since the last write to the
checkpoint buffer.

8. The method of claim 5, wherein the trigger event is the
elapse of a period of time since the last write to the checkpoint
buffer.

9. The method of claim 1, further including deleting the
checkpoint buffer when processing of the batch is complete.

10. The method of claim 1, wherein the checkpoint process
runs on a plurality of processing devices in parallel.

11. The method of claim 10, wherein the batch includes
data records, and wherein an allocation of the data records
among the plurality of parallel processing devices is consis-
tent between runs of the batch and each parallel processing
device maintains an independent checkpoint buffer.

12. The method of claim 10, wherein the batch includes
data records, and wherein an allocation of the data records

10

15

20

25

30

35

40

45

50

55

60

65

10

among the plurality of parallel processing devices is dynamic
and the processing devices share access to a single checkpoint
buffer stored in shared non-volatile memory which writes to
the checkpoint buffer controlled by a checkpoint manager.

13. The method of claim 1, further including:

restarting processing after a fault condition has occurred;

reading the batch of input data including a plurality of

records; and

processing the entire batch.

14. The method of claim 13, wherein the action includes
communicating with a remote server.

15. The method of claim 1, wherein the memory includes
non-volatile memory.

16. The method of claim 15, wherein the action includes
communicating with a remote server.

17. The method of claim 16, wherein the result from per-
forming the action includes information from communica-
tion with the remote server for the unit of work.

18. The method of claim 16, wherein communications with
the remote server are tolled.

19. The method of claim 16, wherein the results of com-
munications with the remote server are stored in volatile
memory and saved to the checkpoint buffer in groups upon
the occurrence of trigger events.

20. The method of claim 19, wherein the trigger event is a
signal from a checkpoint manager.

21. The method of claim 19, wherein the trigger event is
processing of a number of records since the last write to the
checkpoint buffer.

22. The method of claim 19, wherein the trigger event is the
elapse of a period of time since the last write to the checkpoint
buffer.

23. The method of claim 15, further including deleting the
checkpoint buffer when processing of the batch is complete.

24. The method of claim 15, wherein the checkpoint pro-
cess runs on a plurality of processing devices in parallel.

25. The method of claim 24, wherein the batch includes
data records, and wherein an allocation of the data records
among the plurality of parallel processing devices is consis-
tent between runs of the batch and each parallel processing
device maintains an independent checkpoint buffer.

26. The method of claim 24, wherein the batch includes
data records, and wherein an allocation of the data records
among the plurality of parallel processing devices is dynamic
and the processing devices share access to a single checkpoint
buffer stored in shared non-volatile memory which writes to
the checkpoint buffer controlled by a checkpoint manager.

27. The method of claim 15, further including:

restarting processing after a fault condition has occurred;

reading the batch of input data including a plurality of

records; and

processing the entire batch.

28. The method of claim 27, wherein the action includes
communicating with a remote server.

29. A computer-readable hardware storage device storing a
computer program for processing a batch of input data in a
fault tolerant manner, the computer program including
instructions for causing a computer to perform operations
comprising:

performing computations on the batch of input data,

wherein at least one but fewer than all of the computa-
tions includes a checkpoint process for multiple units of
work associated with the batch;

wherein the checkpoint process includes:

for a unit of work from the batch,
if a result from performing an action for the unit of
work was previously saved in a checkpoint buffer

US 9,304,807 B2

11

stored in memory, using the saved result to com-
plete performing the computations on the unit of
work without performing the action again; or

if the result from performing the action for the unit of
work is not saved in the checkpoint buffer, perform-
ing the action to complete performing the compu-
tations on the unit of work and saving the result
from performing the action in the checkpoint
buffer.

30. The computer-readable hardware storage device of
claim 29, wherein the action includes communicating with a
remote server.

31. The computer-readable hardware storage device of
claim 30, wherein the result from performing the action
includes information from communication with the remote
server for the unit of work.

32. The computer-readable hardware storage device of
claim 30, wherein communications with the remote server are
tolled.

33. The computer-readable hardware storage device of
claim 30, wherein the results of communications with the
remote server are stored in volatile memory and saved to the
checkpoint buffer in groups upon the occurrence of trigger
events.

34. The computer-readable hardware storage device of
claim 33, wherein the trigger event is a signal from a check-
point manager.

35. The computer-readable hardware storage device of
claim 33, wherein the trigger event is processing of a number
of records since the last write to the checkpoint buffer.

36. The computer-readable hardware storage device of
claim 33, wherein the trigger event is the elapse of a period of
time since the last write to the checkpoint buffer.

37. The computer-readable hardware storage device of
claim 29, wherein the instructions further cause the computer
to delete the checkpoint buffer when processing of the batch
is complete.

38. The computer-readable hardware storage device of
claim 29, wherein the checkpoint process runs on a plurality
of processing devices in parallel.

39. The computer-readable hardware storage device of
claim 38, wherein the batch includes data records, and
wherein an allocation of the data records among the plurality
of parallel processing devices is consistent between runs of
the batch and each parallel processing device maintains an
independent checkpoint buffer.

40. The computer-readable hardware storage device of
claim 38, wherein the batch includes data records, and
wherein an allocation of the data records among the plurality
of parallel processing devices is dynamic and the processing
devices share access to a single checkpoint buffer stored in
shared non-volatile memory which writes to the checkpoint
buffer controlled by a checkpoint manager.

41. The computer-readable hardware storage device of
claim 29, wherein the instructions further cause the computer
to:

restart processing after a fault condition has occurred;

obtain the batch of input data including a plurality of

records; and

process the entire batch.

42. The computer-readable hardware storage device of
claim 41, wherein the action includes communicating with a
remote server.

43. The computer-readable hardware storage device of
claim 29, wherein the memory includes non-volatile memory.

10

20

25

30

35

40

45

50

55

60

65

12

44. The computer-readable hardware storage device of
claim 43, wherein the action includes communicating with a
remote server.

45. The computer-readable hardware storage device of
claim 44, wherein the result from performing the action
includes information from communication with the remote
server for the unit of work.

46. The computer-readable hardware storage device of
claim 44, wherein communications with the remote server are
tolled.

47. The computer-readable hardware storage device of
claim 44, wherein the results of communications with the
remote server are stored in volatile memory and saved to the
checkpoint buffer in groups upon the occurrence of trigger
events.

48. The computer-readable hardware storage device of
claim 47, wherein the trigger event is a signal from a check-
point manager.

49. The computer-readable hardware storage device of
claim 47, wherein the trigger event is processing of a number
of records since the last write to the checkpoint buffer.

50. The computer-readable hardware storage device of
claim 47, wherein the trigger event is the elapse of a period of
time since the last write to the checkpoint buffer.

51. The computer-readable hardware storage device of
claim 43, further including deleting the checkpoint buffer
when processing of the batch is complete.

52. The computer-readable hardware storage device of
claim 43, wherein the checkpoint process runs on a plurality
of processing devices in parallel.

53. The computer-readable hardware storage device of
claim 52, wherein the batch includes data records, and
wherein an allocation of the data records among the plurality
of parallel processing devices is consistent between runs of
the batch and each parallel processing device maintains an
independent checkpoint buffer.

54. The computer-readable hardware storage device of
claim 52, wherein the batch includes data records, and
wherein an allocation of the data records among the plurality
of parallel processing devices is dynamic and the processing
devices share access to a single checkpoint buffer stored in
shared non-volatile memory which writes to the checkpoint
buffer controlled by a checkpoint manager.

55. The computer-readable hardware storage device of
claim 43, wherein the operations further includes:

restarting processing after a fault condition has occurred;

reading the batch of input data including a plurality of

records; and

processing the entire batch.

56. The computer-readable hardware storage device of
claim 55, wherein the action includes communicating with a
remote server.

57. A system for processing a batch of input data in a fault
tolerant manner, the system including:

means for performing computations on the batch of input

data, wherein at least one but fewer than all of the com-
putations includes a checkpoint process for multiple
units of work associated with the batch;

wherein the checkpoint process includes:

for a unit of work from the batch,

if a result from performing an action for the unit of
work was previously saved in a checkpoint buffer
stored in memory, using the saved result to com-
plete performing the computations on the unit of
work without performing the action again; or

if the result from performing the action for the unit of
work is not saved in the checkpoint buffer, perform-

US 9,304,807 B2

13

ing the action to complete performing the compu-
tations on the unit of work and saving the result
from performing the action in the checkpoint
buffer.

58. The system of claim 57, wherein the memory includes
non-volatile memory.

59. The system of claim 58, wherein the memory includes
non-volatile memory.

60. The system of claim 59, wherein the action includes
communicating with a remote server.

61. The system of claim 60, wherein the result from per-
forming the action includes information from communica-
tion with the remote server for the unit of work.

62. The system of claim 60, wherein communications with
the remote server are tolled.

63. The system of claim 60, wherein the results of commu-
nications with the remote server are stored in volatile memory
and saved to the checkpoint buffer in groups upon the occur-
rence of trigger events.

64. The system of claim 63, wherein the trigger event is a
signal from a checkpoint manager.

65. The system of claim 63, wherein the trigger event is
processing of a number of records since the last write to the
checkpoint buffer.

66. The system of claim 63, wherein the trigger event is the
elapse of a period of time since the last write to the checkpoint
buffer.

67. The system of claim 59, further including deleting the
checkpoint buffer when processing of the batch is complete.

68. The system of claim 59, wherein the checkpoint pro-
cess runs on a plurality of processing devices in parallel.

69. The system of claim 68, wherein the batch includes data
records, and wherein an allocation of the data records among
the plurality of parallel processing devices is consistent
between runs of the batch and each parallel processing device
maintains an independent checkpoint buffer.

70. The system of claim 68, wherein the batch includes data
records, and wherein an allocation of the data records among
the plurality of parallel processing devices is dynamic and the
processing devices share access to a single checkpoint buffer

10

15

20

25

30

35

14

stored in shared non-volatile memory which writes to the
checkpoint buffer controlled by a checkpoint manager.
71. The system of claim 59, wherein the operations further
includes:
restarting processing after a fault condition has occurred;
reading the batch of input data including a plurality of
records; and
processing the entire batch.
72. The system of claim 71, wherein the action includes
communicating with a remote server.
73. A system for processing a batch of input data in a fault
tolerant manner, the system including:
one or more computers; and
one or more storage devices storing instructions that are
operable, when executed by the one or more computers,
to cause the one or more computers to perform opera-
tions including:
performing computations on the batch of input data,
wherein at least one but fewer than all of the compu-
tations includes a checkpoint process for multiple
units of work associated with the batch;
wherein the checkpoint process includes:
for a unit of work from the batch,
if a result from performing an action for the unit of
work was previously saved in a checkpoint buffer
stored in memory, using the saved result to com-
plete performing the computations on the unit of
work without performing the action again; or
if the result from performing the action for the unit of
work is not saved in the checkpoint buffer, perform-
ing the action to complete performing the compu-
tations on the unit of work and saving the result
from performing the action in the checkpoint
buffer.
74. The system of claim 73, wherein the operations further
include:
restarting processing after a fault condition has occurred;
obtaining the batch of input data including a plurality of
records; and
processing the entire batch.

#* #* #* #* #*

